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I. INTRODUCTION

A. Details about important properties in
information theory

In information theory, we use Shannon information to
weigh the content of a message or data. The Shannon
information is defined as

I = − log(pi)

where pi is the probability of the i-th event, (and in this
post, we will use Einstein summation convention.) For
example, that the sun rises from the east is always true,
so the probability of this message is 1. The Shannon
information of this message is 0, which means that this
message contains no information. On the other hand, if
we know the number of the lottery is ”1234567890” where
each number has the same probability, the Shannon in-
formation of this message is − log10 10−10 = 10. In this
way, we can use the Shannon information to know how
much information a message contains.

However, the rare event is not always the most impor-
tant, since it comes with a low probability. Or in the case
of cryptography, what we want is to make the encrypted
message into a ordinary random message. In this case,
we can use Shannon entropy to describe the uncertainty,
or the randomness, of a message. The Shannon entropy
is defined as

H = −pi log(pi)

where pi is the probability of the i-th event. And we can
see that Shannon entropy is just the expected value of
Shannon information.

So far, we introduced two kinds of methods to measure
the information of one message. However, in some cases,
we want to know the relatedness of two messages. In
this case, we can use mutual information to measure the
relatedness of two messages.

Before we keep going to know the mutual information,
we would like to first introduce Kullback-Leibler diver-
gence as the representation of mutual information. The
Kullback-Leibler divergence is defined as

DKL(p||q) = pi log pi
qi

where pi and qi are the probability of the i-th event
in two messages. Note that the Kullback-Leibler diver-
gence is not symmetric, which means that DKL(p||q) ̸=

DKL(q||p). From the equation, we can see that the more
similar the two messages are, the smaller the Kullback-
Leibler divergence is. And if the two messages are iden-
tical, the Kullback-Leibler divergence is 0.

Then, we can use the Kullback-Leibler divergence to
define the mutual information as

I(X;Y ) = DKL(P (X,Y )||P (X)P (Y ))

where P (X,Y ) is the joint probability of X and Y, and
P (X)P (Y ) is the product of the marginal probabilities
of X and Y. We can see that the mutual information is
symmetric, which means that I(X;Y ) = I(Y ;X).

To make a better picture of the mutual information,
we can consider a case that X and Y are indepen-
dent. In this case, the joint probability of X and Y is
the product of the marginal probabilities of X and Y ,
which means that I(X;Y ) = 0. On the other hand,
if X and Y are identical, the joint probability of X
and Y is the same as the marginal probabilities of X
and Y , which means that I(X;Y ) = H(X) = H(Y ).
Also, we get the range of mutual information which is
0 ≤ I(X;Y ) ≤ min(H(X),H(Y )).

Finally, the last piece of pizza, I mean puzzle, is the
conditional entropy. Conditional entropy is the entropy
of one random variable X when given the value of another
random variable. The conditional entropy is defined as

H(Y |X) = p(xi)p(yj |xi) log p(yj |xi)

where p(xi) is the probability of the i-th event of X, and
p(yj |xi) is the probability of the j-th event of Y when
given i-th event of X.

Now, we can connect the entropy, the conditional en-
tropy and the mutual information by the following equa-
tion

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (1)

which is the important relationship that we will use in
this project.

B. Encryption

There are three elements in encryption: plaintext, ci-
phertext, and key. Plaintext is the original message. Ci-
phertext is the encrypted message. Key is the secret
used to encrypt the plaintext. The encryption process is
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a function that maps the plaintext and key to the cipher-
text. The decryption process is a function that maps the
ciphertext and key to the plaintext.

Firstly, we consider the single-bit encryption. To make
sure that once we know the ciphertext and the key, we
can recover the plaintext, the encryption function must
be a bijection. The possible encryption functions are:

f1(0, 0) = 0, f1(0, 1) = 1, f1(1, 0) = 1, f1(1, 1) = 0

f2(0, 0) = 1, f2(0, 1) = 0, f2(1, 0) = 0, f2(1, 1) = 1

f1 is XOR (exclusive-OR) encryption, and f2 is XNOR
(exclusive-NOR) encryption. They both have the char-
acteristic that ciphertext is corresponding to both 0, 1;
only once we know the key is, the plane text can be re-
covered. And in most of cases, we pick XOR encryption
as the most basic encryption to bit-wise operation.

Before we take account into multi-bits encryption,
there are two important properties of the operation of
a secure cipher identified by Shannon: confusion and dif-
fusion. Confusion means that the relationship between
the ciphertext and the key must be complex and involved.
Diffusion means that the statistical structure of the plain-
text must be dissipated into long-range statistics of the
ciphertext.

There are two common ways to achieve confusion and
diffusion which are Substitution-Permutation Network.

a. SP-Network contains two main features: substi-
tution and permutation. Substitution means that the
plaintext is replaced by the ciphertext using a substitu-
tion table. Permutation means that the order of the bits
in the ciphertext is changed. Finally, at each round, the
round key is combined using XOR encryption and sends
the results to next round. The SP-Network is illustrated
as follows:

b. Feistel Cipher use another way to realize confu-
sion and diffusion. It splits the plaintext into two halves,
and each round, the left half is XORed with the round
key and then the result is sent to the round function.
The output of the round function is XORed with the
right half and then the result is sent to the next round.
The Feistel Cipher is illustrated as follows:

Based on these concepts, we have many kinds of
algorithm to encrypt the data. We have an in-
troduction about 3 of the most common encryp-
tion algorithms which is written with the help
of GPT: https://github.com/Jim137/Entropy/tree/
main/encryption_algorithm#readme. Also the exam-
ple code can be found in ‘src‘ folder.

All we have discussed above is that the encryption is
about bit or binary system. Now, if we have a basis set of
the data, e.g.: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} or {A,B,C, ..., Z},
we still can use the index to map the basis set to the bi-
nary data, like Base64 encoding. For the N-bases system,
we have 11 methods introduced by Shannon in 1949 to
encrypt the data, including:

FIG. 1. A sketch of a SP-Network with 3 rounds.a
a Cited from https://en.wikipedia.org/wiki/

Substitution-permutation_network.

FIG. 2. A sketch of a Feistel Cipher.a
a Cited from https://en.wikipedia.org/wiki/Feistel_cipher.

• Simple Substitution Cipher

• Transposition

• Vigenère cipher

• N-grams Substitution Cipher

• Single Mixed Alphabet Vigenère Cipher

• Hill Cipher

• Playfair Cipher

https://github.com/Jim137/Entropy/tree/main/encryption_algorithm#readme
https://github.com/Jim137/Entropy/tree/main/encryption_algorithm#readme
https://en.wikipedia.org/wiki/Substitution-permutation_network
https://en.wikipedia.org/wiki/Substitution-permutation_network
https://en.wikipedia.org/wiki/Feistel_cipher
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• Multiple Mixed Alphabet Substitution

• Autokey Cipher

• Fractional Ciphers

• Codes

To make it clear, we can construct a function mapping
the plaintext with the key to ciphertext as shown in the
following form:

f :{m0,m1,m2, ...,mN−1} × {m0,m1,m2, ...,mN−1}
→ {m0,m1,m2, ...,mN−1}

which f needs to satisfy the following properties: 1. f
is a bijection. 2. Ciphertext must correspond to every
element in the basis set. That without the key, we cannot
recover the plaintext.

Given a 3-elements basis set {A,B,C}, we have 3!2! =
12 possible encryption functions, one of them is:

f A B C
A A B C
B B C A
C C A B

And a general form of encryption function can be rep-
resented as:

ci = f(pi, ki) = a · pi + b · ki + c mod N

where a, b, c are integers, N is the number of elements
in the basis set, pi is the plaintext, ki is the key, and ci
is the ciphertext. And the decryption function is:

pi = f−1(ci, ki) = a · ci + b · ki + c mod N

where we can see that f = f−1, in this case, f is so-
called symmetric encryption.

To realized the perfect secrecy in this way, we need
to have a one-time pad (OTP), which has been proved
mathematically that it can achieve perfect secrecy and
quantum resistance. However, it still have restrictions
in the practical application, such as pre-shared key, key
length, and key distribution (P.S. Quantum Key Distri-
bution (QKD) may be helpful in OTP.)

Nowadays, what we usually use in daily communica-
tion is the asymmetric encryption (as known as Public-
key cryptography), such like RSA, Elliptic Curve Cryp-
tography (ECC) and so on. In this case, we have two
keys, one is public key, and the other is private key. The
public key is used to encrypt the data, and the private
key is used to decrypt the data. The public key is usu-
ally published to the public, and the private key is only
known by the owner.

The encryption function and decryption function now
will no longer be a linear function as symmetric one, but

a nonlinear function. The encryption function is usually
a trapdoor function, which is easy to compute in one di-
rection, but hard to compute in the opposite direction
without the private key. Therefore, we can use asym-
metric encryption to exchange the symmetric key, and
then use the symmetric encryption to encrypt the data.

However, it has been proved that RSA is not quantum
resistant, which means that the quantum computer can
break the RSA in polynomial time with Shor’s algorithm.
And now, we have Post-quantum cryptography (PQC) to
resist the attack from both classical and quantum com-
puter.

II. METHODS

We constructed a 4-bits XOR cipher as an example to
show how to calculate the entropy of the encrypted data,
mutual information and conditional entropy to show the
relation of plaintext, key and ciphertext.

In addition, to show the fractal structure of XOR
encryption, we also constructed 10-bits and 8-bits XOR
cipher.

The details of the methods can be found in
entropy_of_encrypted.ipynb in my GitHub repos-
itory: https://github.com/Jim137/Entropy/blob/
main/entropy_of_encrypted.ipynb.

III. RESULTS

Note: the base of logarithm we used is 2 which repre-
sents bit in the unit of entropy.

To start with the 4-bits cipher, the following figure
shows the ciphertext as the result of XOR operation be-
tween plaintext and key. The color represents the cipher-
text (or can directly see from the number on it). We can
see that the ciphertext is equally distributed to every el-
ement in the basis set. And the result is like Sudoku (數
獨) that the number of ciphertext is not showing again
on its row and column.

https://github.com/Jim137/Entropy/blob/main/entropy_of_encrypted.ipynb
https://github.com/Jim137/Entropy/blob/main/entropy_of_encrypted.ipynb
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FIG. 3. 4-Bits Ciphertext Heat Map.

And to calculate the properties in information theory
later, we firstly made a bar plot of the entropy in 4-bits
basis set to have more clear view. In the figure, we can
see that when the numbers of 0 and 1 are equal, the
entropy reaches the maximum. And the entropy is at
the minimum when all the bits are 0 or 1.

FIG. 4. 4-Bits Entropy Bar Plot.

The entropy of the ciphertext is shown in the following
figure. It turns into a four-fold symmetry instead of a
fractal structure.

FIG. 5. 4-Bits Ciphertext Entropy Heat Map.

Then the mutual information between C, P and C,
K are shown in the followings. We can see that they
are a quarter turn to each other. And also, the mutual
information between C, P and C, K are small in most of
the part, which means that the corelation between the
ciphertext and the plaintext or key is weak.

FIG. 6. 4-Bits Mutual Information between C, P and C, K.

With Eqn. 1, we can calculate the conditional entropy
in the 4 kinds of relation. Let’s see when the plaintext
or key is known and how the conditional entropy that
ciphertexts have. Based on the mutual information we
get, there are cross-like pattern on it and have a quarter
turn to each other.
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FIG. 7. Conditional Entropy of Ciphertext when Plaintext or
Key is Known.

And when the ciphertext is known, the conditional en-
tropy of plaintext and key are shown in the followings.
We can see that the conditional entropy of plaintext and
key are the same, which means that the plaintext and
the key are as well as hard to recover.

FIG. 8. Conditional Entropy of Plaintext and Key when Ci-
phertext is Known.

And we can compare the average entropy of 4-bits ci-
pher and 8-bits cipher. We assume that the probability of
each states (bits combination) is the same, and we know
that the entropy of binary distribution is in the interval
of 0 and 1 bit. The result is shown in below table.

4-Bits 8-Bits
⟨HBasis⟩ 0.7806 0.9024
⟨HCipher⟩ 0.7806 0.9024

⟨H(P∥C)⟩ = ⟨H(K∥C)⟩ 0.5434 0.7788

TABLE I. Average Entropy of 4-Bits and 8-Bits Cipher.

We found that for equidistributed keys, the average
entropy of ciphertexts is same as the average entropy of
basis set. However, once we know the ciphertext, the
average entropy (conditional entropy) of plaintexts and
keys will be lowered down.

That sounds weird, since we encrypt the data, it should
be more random and the entropy should be increased.
But the result shows that the entropy of plaintext and
key are decreased. The reason is that the plaintext should
NOT be equidistributed! The plaintext we want to
send must be meaningful and full of ”information”.

On the other hand, what we discussed here is single-
char encryption (but multi-bits). In real case, we would
send a sequence of chars instead of a single char. The
average entropy we calculated here only represents the
case that if we send a random plaintext with a random
key in all the same probability.

Therefore, if we implement the randomly distributed
key on the ”full-of-info” plaintext, it will make the cipher-
text random instead keeping the regularity of plaintext,
which results in the increase of the entropy of ciphertext
from plaintext.

IV. CONCLUSIONS

Based on the results, we can conclude that the prop-
erties of a good encryption are as follows:

a. The transformation map from plaintext and
key to ciphertext must be equidistributed. If the
transformation map is not equidistributed, based on char
frequency in each languages statistically, the eavesdrop-
per can guess the plaintext from the ciphertext with fre-
quency characteristic.

b. The key must be randomly distributed.
Since we want to make the conditional entropy between
ciphertext and plaintext reach the maximum, and the
mutual information between ciphertext and plaintext
reach the minimum. As a result, the eavesdropper cannot
get useful information from ciphertext without key.

c. The order of the sequence of chars from
plaintext to ciphertext must have a random per-
mutation, and we also have to make the length of
ciphertext into a given length instead of original
length. To satisfy confusion and diffusion, it can make
the mutual information between ciphertext and plain-
text lower, and the conditional entropy between cipher-
text and plaintext higher. As a result, it will make the
eavesdropper even harder to get useful information in the
case that we use the same key and communicate multiple
times.

Appendix A: FRACTAL STRUCTURE

In the jupyter notebook of methods, I have presented
a special characteristic of XOR which is Bitwise Fractal.
However, I cannot make a good interpretation of them,
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also it will exceed the topic. So I don’t put it in the main
text, but I still want to show how cool it is. Therefore, I
put it in appendix.

We can clear see that the following figure, 10-bits ci-
pher, presents a fractal pattern.

FIG. 9. 10-Bits Ciphertext Heat Map.

The unit structure of the fractal we can see that is
XOR, where we prepared a XOR true table below. That
the diagonal have higher value than the anti-diagonal.
And the above figure did show the XOR behavior in every
two-power-series scales’ structure.

FIG. 10. XOR True Table.

We also can see that they still satisfy the property what
we concluded above.

The entropy of cipher turns into four-fold symmetric
instead of fractal pattern.

FIG. 11. Entropy of 10-Bits XOR Cipher.

Mutual information plots are a quarter turn to each
other.

FIG. 12. Mutual Information of 8-Bits Cipher w.r.t. C, P
and C, K.

So do conditional entropy plots when plaintext or key
is known.
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FIG. 13. Conditional Entropy of 8-Bits Ciphertext when
Plaintext or Key is Known.

And when ciphertext is known, the conditional entropy
plots to plaintext and key are the same.

FIG. 14. Mutual Information of 8-Bits Plaint or Key when
Ciphertext is Known.

All the properties above are the same for 4-bits, 8-
bits and 10-bits cases. But for higher number of bit, the
fractal pattern is more significant. I think this is a cool
phenomenon, that I want to introduce.
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